THEORY and INTERPRETATION of ORGANIC SPECTRA

H. D. Roth

2D NMR Spectroscopy

To record a normal FT NMR spectrum we apply a pulse to our spin system and record the free induction decay (FID) following the pulse. The spectrum is obtained by Fourier Transform where the time dependent FID is converted to a function of frequency, i.e., an NMR spectrum. 2D NMR spectroscopy records a spectrum as a function of two characteristic times. Many FIDs are recorded as a function of a systematically varied delay time.

The typical two-dimensional NMR experiment has three phases; during the preparation phase the system is allowed to relax; then a 90° pulse is applied and the system is allowed to evolve as a function of a delay time, t_1, which can be of the order of milliseconds to seconds; then another 90° pulse is applied and the free induction is recorded as a function of time, t_2.

The series of experiments yields an array of data as a function of two times. The array is subjected to two consecutive Fourier transformations, the first giving a series of NMR spectra with different delay times, the second
giving a two-dimensional spectrum as a function of two frequencies, either
two chemical shifts or a chemical shift plus a coupling constant.

The first Fourier transform is applied to the
rows, giving a series of NMR spectra; the
second Fourier transform is applied to the
columns, giving a two-dimensional array.

2D Spectra in which both frequencies are chemical shifts are called
correlation spectra; spectra in which one frequency is a chemical shift
whereas the other is a coupling constant are called J–resolved spectra.
Correlation spectra plotting 1H chemical shift vs. 1H chemical shift are
called COSY (for COrelation Spectroscopy), those plotting 1H chemical
shift vs. 13C chemical shift are called HETCOR (for HETero COrelation
Spectra). Among J-resolved spectra we differentiate between homonuclear J-
resolved (1H chemical shift vs. 1H splitting) and heteronuclear J-resolved spectra (13C chemical shift vs. 1H splitting).

The data can be plotted in two ways, as a stacked plot (left) or as a contour plot (right). The stacked plot contains a large number of 1D NMR spectra presented as a function of the delay time, t_1; for clarity each spectrum is shifted slightly relative to the preceding one. The contour plot contains the peak height information as a series of cross sections through the signals at different heights above the x,y plane, projected into that plane.

COSY Spectra

The 2D spectrum of 1-bromopropane is a simple example of a COSY spectrum.
Identical 1H spectra are plotted along the x- and y-axes; in addition a contour plot is shown on the diagonal. The off-diagonal peaks, appearing always in pairs, indicate that the central CH$_2$ group is coupled to the terminal CH$_2$ and CH$_3$ groups. Although this is hardly a surprising conclusion for a system as simple as 1-bromopropane, it illustrates the potential of the technique.

The 2D spectrum of 3-heptanone poses a more real problem because the CH$_2$ groups at C-2 and C-4 are not resolved. The off-diagonal peaks in the 2D spectrum allow an unambiguous assignment of all signals; they show the connectivity of the 1H nuclei at C-7 (0.6 ppm), with C-6 (1.0 ppm), with C-5 (1.3 ppm) and with C-4 (2.15 ppm) and also the connectivity of the 1H nuclei at C-1 with those at C-2.
Special versions of COSY can differentiate between short-range and long-range interactions, as illustrated below.

A more complex spectrum is shown on the next page; some of the cross peaks are identified whereas others have been left as an exercise for you.
This unknown spectrum gives you an opportunity to practice.
HETCOR

2D spectra plotting 1H chemical shift vs. 13C chemical shift are commonly called HETCOR. For a HETCOR spectrum the pulse sequence is changed relative to that for COSY; during the data acquisition phase broadband decoupling is applied to simplify the 13C spectrum.

The first HETCOR spectrum to be discussed is that of 1-bromopropane, correlating the three 1H multiplets (x axis) with the broadband decoupled 13C resonances (y axis).
Three off-diagonal peaks indicate the carbons to which the H$_2$ and H$_3$ units are attached. Again, the result is hardly surprising for this simple system, but it shows the potential of the technique.

The spectrum of methyl adamantandione carboxylate presents a more challenging problem, including barely separated 13C signals and overlapping 1H multiplet.
HOMONUCLEAR J-RESOLVED

Homonuclear J-resolved spectra, showing 1H chemical shift vs. 1H splitting can be displayed in two ways. First, the chemical shift can be displayed including the J-coupling, i.e., as a fully coupled spectrum. Alternatively, the 2D array of data points can be tilted by 45°; the resulting spectrum is the equivalent of a decoupled 1H spectrum and the 2D spectrum contains the multiplets as vertical columns.
The following 2D spectrum combines a COSY and a fully coupled J-resolved spectrum.
The 2D spectrum of butyl ethyl ether shows both the fully coupled and the decoupled 1H spectrum; the 2D data array has been tilted by 45°.
HETERONUCLEAR J-RESOLVED

Heteronuclear J-resolved spectra display 13C chemical shifts vs. 1H splitting; these spectra provide another way to determine the number of 1H nuclei attached to a carbon. Our first example shows the heteronuclear J-resolved spectrum of 4-methylpyrimidine. The methyl carbon and the tertiary carbon are clearly discernible from the secondary ones.
A more complex spectrum is shown below as a contour plot and, on the next page as a stacked plot.